Promenade
 lighting it would extensive ramp and lifit stuctures. The riverwalk has been gently 1 ifed to a heigh of 6.5 m
AOD where it meets the bridge, forming a landscaped launching point tor the staricase and dower bridge to The pier and lif. This raised landing point keeps fully open views of the river and Nine Elms/ Pimilico, and
 founded on a 3 . reinforced concrete pile cap an ancored by byroup of 1.5 sm to 0.1 m diameter reinforced con-
crete piles. At this stage is is testimated that 12 pilesto 018 piles will be erequires at each embankment. The large predominanty horizontal foreses from the cables aret transter via a reinforceded concrete beams and shear wall

Integrating Cycle and Pedestrian Traftic

an arched route with steps as widely sppeces steps as needed.
 The main lower span of their bridgege is desesigned as as 5 smm deck w with paintee s speparation tor cycclists and pecdes-

The PPA River Clearance requirements of 10.96 m AOD for 150 m lenghts will be maintained.
Two bridge ementer

Superstructure
 span between the piers and 35 m for the souts span. Two groups of focked coil cables ether side of f the deck The preadominant geometrical constraints of the bridge are clear width of 150 m between piers, minimun heiegh above the water level and the exisining levels and flood defences at either side of the iver banks.
The architectural concepts allows pedestrians and cyclists to cross the bridge at wo levels, the l ower level

Upper deck
The upper bridge deck is formed from prefibicicated and site -jined Ductal Fibrecement sections spanning
between the props. The tm wide deck structure comprises two longituduinalucuctal beams either side of the

Lower deck

The lower deck is directly connected to the suspension cables using a customized steel clamp. The deck is
 the spans of the concrete plans and ranges from 6.0 m to 8.0 . The width of the planks is spproximately
2.0m. This fxixg typology for the deck allow for thermal expansion and contraction of the suspension cabses
.wis. 2.Om. This fixing typology for the deck allow for thermal expansion and contraction of the suspension cables
without imposins significant stresses onto the deck. Other finshes, such as the lighting and handrail, will be without inposing sisnificant stressee
applied or fixed the deck structure.

Suspensions system

Props
Verical
camp br
Vertical steel propp are located either side of the deck. The props are connected to the suspension cables s via
clamp brale comnect the prons in orvide support to the arch and upper deck. Horizontal ties running within the decks

${ }^{\text {Pie }}$

The rive piers themselves compris fabricted steel box sections/ concrete columns connected to a reinforced
concrete foundation which is founded on 2 No concrete caisons. The piers have to

Pier foundations
The bridge is suppo
 concrete caisons, dus into the river bed level within a sheet pile cofferdam. When a 3 m deep pile cap will be
placeed onto the caison. The p pier foundations have to w withstand a ship impact without significant permane placed onto the caisson. Ihe pier foundaions have to withstand a ship impact without signiricant perm
displacements as well Stairs. walkways and lits
Stairs and walkways are desi,
Stairs and waik ways are desigg as simply supported structures spanning from the e embankment onto the pief
The structure of these elements will be Ductal Fibecement planks. The lift will require a lift shaft and is csad The structure of these elements sill be Ductal
as
ightweightopen gass and stel 1 structure.

ynamic behaviour of the bridge
The infuence of the wind on the bridge will need to be examined in in more details is terms, aerodynam stability, buffir
next stage.

Pedestrian excitation
Suspension bridges wit
Sispension bridges with a low dip of the suspension cables prone to dynamic excitation by pedestrian users ehaviour will be carried out during the next stage of the design. Considering the spans and typology of the bridg construction mass tuned dampers will very likely be required. At his stage it is assumed that dampers
will be distributed across the bridge, egg at third and quarter points and integrated within the bridge deck. Phased Construction
The ridge is desinged to
The bridge is designed to limitimpact onto ivier trafict co an absolute minimum. Only the installation of
 terms of erection sequence and certainty in terms of the pogn $\frac{g}{\text { girders provide }}$ Platforms for subsequent construction operations
The principle stages for the erection of the bridge are a s follows
Stage 1 I Instal labutments either side of the bridge, concrete caissons and internal pies
tage $e 2$ Run pioto cables across the rivers and ind

[^0]
rossing experience up close.

$\begin{aligned} & \text { of materasa is sa once using the latest advance } \\ & \text { of the beauty of eariter industrial strucurues. }\end{aligned}$
side view
$\begin{aligned} & \text { Crossing the bridge, and inhabiting the bridge, is encouraged via two separate eet intertwined routes. } \\ & \text { The lower route via the suspension bridge deck is d direct route a cross the river, catering to the traveler in }\end{aligned}$
The lower route via the suspension
$\begin{aligned} & \text { trige. } \\ & \text { The jeurney a cross the arch is very dififerent experience, unconstrained by cables, ties and props, the user }\end{aligned}$
$\begin{aligned} & \text { ises further and further above the water with a magnificent view ver the thames from its crown. Both } \\ & \text { rossing experiences depart and arive a texactly the same location, allowing the userto decide which route }\end{aligned}$
$\begin{aligned} & \text { crossing experiences } \\ & \text { take every } \text { day anew. }\end{aligned}$

Place making across the bridge \& its landing points

Tension ribbon and arch structure

[^0]: Plan - Integration of pedestrians \& cyclists

